
Efficient Cross-Frequency Beam Prediction in 6G
Wireless Using Time Series Data

Vaibhav Bhosale§1, Navrati Saxena2, Ketan Bhardwaj1, Ada Gavrilovska1, Abhishek Roy3

1School of Computer Science, Georgia Institute of Technology, Atlanta, USA
2Department of Computer Science, San Jose State University, San Jose, USA

3Advanced Communication Technology, Mediatek Inc, San Jose, USA
vbhosale6@gatech.edu, navrati.saxena@sjsu.edu, ketanbj@gatech.edu, ada@cc.gatech.edu, Abhishek.Roy@mediatek.com

Abstract—Next generation 6G wireless envisions a much higher
data rate and a lower latency compared to 5G wireless networks.
Directional antennas with narrow beams across high mmWave
frequencies hold the key to achieving such high data rates.
However, Beam Management (BM), which is the process of
finding appropriate transmit and receive beams, offers significant
challenges. Dynamic channel variation, user mobility, and narrow
beams in high frequency mmWave channels further complicate
these challenges. Efficient Machine Learning (ML) strategies can
be used to alleviate this overhead. In spite of their underlying
differences, sub-6 GHz and high frequency mmWave channels
share some similarities in array geometry, number of paths, and
surrounding environment. As sub-6 GHz channel characteristics
are relatively easier to acquire and learn, we introduce a new
machine learning framework, using transformer and LSTM to
learn sub-6 GHz channel information over time for efficient beam
prediction across high frequency mmWave channels. System
Level simulation results point out that when using time-series
data-based learning of beam patterns with transformers or
LSTMs in sub-6 GHz channels, our proposed scheme achieves
up to 99.5% top-5 beam prediction accuracy while reducing the
BM overhead by over 50% compared to existing work.

Index Terms—6G wireless, beam management, machine learn-
ing, transformer, LSTMs, channel measurements

I. INTRODUCTION

6G wireless, driven by the insatiable demand for high
data rates and ubiquitous connectivity, aims to utilize high-
frequency millimeter wave (mmWave) bands to provide an
order of magnitude more spectrum and ubiquitous connectivity
for emerging new applications, like eXtended Reality (XR)
and Metaverse. However, mmWave bands face challenges such
as high path loss, blockage, and oxygen absorption. Dense
network deployment with a large number of small-size, direc-
tional antennas is expected to alleviate these challenges. This
will be aided by beam management (BM) to find the (near)
optimal transmit/receive beams between the next-generation
base station nodes (gNB) and mobile User Equipment (UE).

One major challenge [1] in BM lies in inefficient beam
sweeping for the downlink (DL)/uplink (UL) beam corre-
spondence. Beam sweeping involves an exhaustive search to
find the beam/beam-pair having the strongest signal strength.
Naturally, performing an exhaustive search in all possible
directions is quite complex and expensive (both in terms of

§This work was done as an intern at Mediatek Inc

latency and power). This already complex problem becomes
even more complicated in the mmWave bands, located in the
frequency spectrum ranging from 30 to 300 GHz. MmWave
bands provide the benefits of a big chunk of available and
un-explored frequencies. However, these benefits come with
a high attenuation cost in free space. To address the high
attenuation, a large number of highly directional MIMO
antennas are used, whose gain compensates for the path
loss. The use of these highly directional MIMO antennas
demands precise and efficient beam selection methods to
ensure the required application data rate and meet the strict
delay requirements. Another challenge such bands pose is
the low diffraction capacity and severe blocking caused by
most materials. Furthermore, beam searching across these
large number of narrow beams in high mmWave frequencies
incurs more delay and computational power. This makes BM
in mmWave more complex and expensive compared to BM in
sub-6 GHz bands. Therefore, 6G wireless will continue using
sub-6 GHz bands, also known as frequency range 1 (FR1)
for outdoor to indoor connectivity, while exploiting mmWave
bands or frequency range 2 (FR2) for high data rates in indoor
and outdoor environments [2].

Artificial intelligence (AI) and machine learning (ML) are
expected to play a key rile in alleviating the complexity
of 6G wireless. Major wireless standard bodies, like the
3rd Generation Partnership Project (3GPP), anticipate native
AI/ML support in 6G wireless. 3GPP’s efforts encompass
AI/ML applications for networks and radio interfaces, with
the eventual goal of standardization [3]. More recently, 3GPP
has recognized the use of AI/ML techniques for efficient
BM as a key use-case. As many fundamental relationships
in wireless communications are often non-linear, deep neural
networks (DNNs) have recently been adopted in various fields
of wireless communications including BM [4]–[12].

Interestingly, while different types of DNN models [11],
[12] have been recently used for beam prediction such as using
past channel state information to predict future channels [9],
using sub-6 GHz channels to predict mmWave beams [11],
[12], time series data for cross-frequency BM is not yet ex-
plored. As BM in wireless involves non-linear mappings across
time-varying wireless channels, we believe that exploring time
series data for cross-frequency BM has sufficient potential for
improving its efficiency and accuracy. This is where we believe
that models, such as transformers [13] and long short-term979-8-3503-6491-0/24/$31.00 ©2024 IEEE20
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memory (LSTMs) [6] come into play§. Similar to recurrent
neural networks (RNNs) [5], LSTM is a deep learning model
architecture capable of learning long-term dependencies for
sequence prediction problems. A transformer, on the other
hand, is another deep learning model architecture that avoids
recurrence and instead relies entirely on an ‘attention’ mech-
anism, differentially weighing the significance of each part
of the input data for obtaining global dependencies between
input and output. Removing recurrence in favor of attention
mechanisms endows transformers with significantly higher
parallelization, compared to other popular DNN methods like
RNNs and LSTMs.

In this paper, we introduce a new time series data-based
beam prediction using models, such as LSTMs and trans-
formers that exploit channel characteristics of a sub-6 GHz
channel to choose a mmWave beam. The use of LSTMs
incurs a lower number of FLOPs, resulting in lower energy
consumption, while transformers can serve inference faster due
to the presence of their underlying attention mechanism. Our
framework lets 6G developers choose which model they need
to use based on their specific requirements. Assuming a sub-6
GHz connection is already established, we learn its underlying
channel information over time by using LSTM/transformer
learning. While learning over sub-6 GHz information aids
in reducing the search space needed for the initial mmWave
beam establishment, the use of LSTMs/transformers over time
series helps in the efficient capturing of time-varying wireless
channel characteristics.

The rest of the paper is organized as follows: In Sec-
tion II we take a look at the major related works on beam
prediction and point out our motivation behind using time
series information. Section III explains the system model and
problem formulation. Subsequently, we explain our proposed
time series based beam prediction method in Section IV.
Simulation results in Section V show the efficacy of our
solution. Section VI concludes the paper with pointers to
future research.

II. RELATED WORKS AND MOTIVATION

The BM problem has recently raised an increased research
interest, especially for the high frequencies (e.g., mmWave and
THz) 6G wireless networks. These high frequency networks
are known to suffer from significant path loss and block-
age [14], and hence dense network deployments with large-
scale antenna arrays are used to achieve high beamforming
gains to compensate this loss. However, the increased scale
of antenna arrays introduces high overhead when UEs try
to periodically measure the signal quality of different beams
for reporting the beam measurements for beam alignment and
potential handovers [15].

Adaptive learning of time varying wireless channels using
AI/ML techniques have recently been used to address this
challenge and enable reliable and efficient beam manage-
ment [16], [17]. The work in [4] uses reinforcement learning
to develop a multi-armed bandit framework for beam tracking.

§RNN was also a candidate, but we did not consider it due to its
vanishing/exploding gradients for longer sequences.
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Fig. 1: Depicting the system setup where the FR1 and FR2
antenna arrays are colocated on the base-station and UE.

A data-driven strategy that fuses the reference signal received
power (RSRP) with orientation information using an RNN is
developed in [7]. The authors in [8] use LSTMs to support
large-scale antenna array enabled hybrid, directional BM in
hotspot-based virtual small cells. [9] explores LSTMs to utilize
the past channel state information (CSI) for efficient predic-
tion of future channels in vehicular mmWave systems. Deep
learning techniques, similar to Natural Language Processing
(NLP) is used in [10] to predict the best serving beams of
the mobile UEs. Interestingly, the work in [11] points out the
efficacy of fully-connected neural networks (FCNN) to closely
approximate these mapping functions, required for predicting
the optimal mmWave beams from sub-6 GHz channels. [12]
also uses deep neural networks for exploring the power delay
profile (PDP) of a sub-6 GHz channel to predict the optimal
mmWave beams.

Broadly a lot of this work has focused on predicting beam
parameters by either (i) looking at fewer beam parameters, (ii)
parameters over time, (iii) parameters in a different frequency
band, etc. Our focus is on the latter two classes of problems,
where AI/ML has been recently used to share information
along the temporal and frequency domains individually. How-
ever, to the best of our knowledge, exploiting time series data
for beam prediction in different frequency bands is not yet
explored. As BM in high frequency mmWave bands are more
complex and expensive compared to BM in sub-6 GHz bands
and wireless channels are inherently time varying, we posit
that there is additional value in combining the information
across the two domains (time and frequency) to use temporal
information for improving the prediction accuracy in the
frequency domain beam prediction. Fortunately, LSTMs and
transformers provide an efficient tool to capture such time
series information [18]. Although originally developed for
Natural Language Processing (NLP) [6], [13], over the next
few sections we will show how time series based learning can
delve into time varying wireless channels information to assist
and improve cross-frequency BM in 6G wireless.

III. SYSTEM AND CHANNEL MODELS

We consider a system where the uplink communication
happens in FR1 and the downlink in FR2 as shown in Figure 1.
We assume MFR1 antennas for uplink and MFR2 antennas for
downlink. We follow a similar system operation and channel
models as defined in [11]. We use the uplink channel vector as
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hFR1[k] ∈ CMFR1×1 at the kth subcarrier with k = 1, . . . ,K
(K is the total number of subcarriers) and the signal received
at the gNB sub-6 GHz or FR1 array as:

yFR1[k] = hFR1[k]sp[k] + nFR1[k], (1)

where sp[k] is the uplink pilot signal satisfying E∥sp[k]∥2=
PFR1

K , with PFR1 as the uplink transmit power, and nFR1[k] ∼
NC(0, σ

2, I) is the noise at the gNB FR1 array. Similarly,
defining the downlink beamforming vector as f ∈ CMFR2×1

leads to the signal received by the UE as:

yFR2[k̄] = hT
FR2[k̄]fsd + nFR2[k̄] (2)

where hFR2[k̄] ∈ CMFR2×1 represents the downlink channel
from the mobile UE to the gNB FR2 array at the k̄th

subcarrier, k̄ = 1, 2, . . . , K̄. Owing to the hardware constraints
in the FR2 analog beamforming vectors, these vectors are
generally selected from quantized codebooks. Thus, it can
be assumed that the beamforming vector f takes one of the
candidate values collected in the codebook F , i.e., f ∈ F ,
with cardinality ∥F∥= NCB . We adopt a geometric (physical)
model for the FR1 and FR2 channels [19]. Using this allows
us to model the FR2 channel as

hFR2[k] =

DC−1∑
d=0

L∑
l=1

αle
−j 2πk

K p(dTs − τl)a(θl, ϕl), (3)

where L is the total number of channel paths, α, τ, θ, ϕ are
the path gains (including the path-loss), the delay, the azimuth
angle of arrival (AoA), and elevation AoA, respectively, and
a is the steering vector for the lth channel path. Ts represents
the sampling time while DC denotes the cyclic prefix length
(assuming that the maximum delay is less than DCTs). Using
this channel model and the system setup mentioned above,
the achievable downlink rate for an FR2 channel hFR2 and
beamforming vector f can be written as:

R({hFR2[k̄], f}) =
K̄∑

k̄=1

log2(1 + SNR∥hT
FR2f∥2) (4)

where the SNR is defined as SNR = PFR2

Kσ2
FR2

. The op-
timal beamforming vector is the one that maximizes the
R({hFR2[k̄], f}), which we denote by f⋆. Predicting f⋆ re-
quires estimating the channel hFR2 or an online exhaustive
beam training, which incurs large training overhead, especially
for high-frequency FR2 or mmWave channels.

[11], [12] recently pointed out that it is feasible to use the
FR1 channel information to predict the beamforming vector
in FR2. Moreover, they have also shown that there exists a
mapping from the FR1 channels to the achievable rate in FR2
channel.

Φn : hFR1 → R(hFR2, fn), n = 1, 2, . . . , ∥F∥, (5)
and that there exists a mapping function that can be leveraged
to obtain the optimal mapping between the FR1 and the FR2
channels. Let’s define the optimal mapping function as η⋆t at
timestep t as

η⋆ = argmaxn∈{n=1,2,...,∥F∥}Φ
n
FR1(hFR1) (6)

The works in [7]–[10] showed that temporal FR2 channel
information can be utilized to predict the optimal FR2 beam-
forming vector at the next time-step, thereby giving

Ψt : {ht−m
FR2, h

t−m+1
FR2 , . . . , ht−1

FR2} → R(ht
FR2, f

⋆) (7)
Combining with Equation 7 with Equation 6, gives us

(8)Ψt : {η⋆(ht−m
FR1), η

⋆(ht−m+1
FR1 ), . . . , η⋆(ht−1

FR1)}
→ R(ht

FR2, f
⋆)

We term this composition Ω mapping from the FR1 chan-
nels for m time-steps to the optimal beamforming vector at
the latest time-step.

Ωt : {ht−m
FR1, h

t−m+1
FR1 , . . . , ht−1

FR1} → R(ht
FR2, f

⋆) (9)
Prior works have shown thatthe high beam training time

raises significant challenges with solving these functions using
traditional (non-ML) approaches. Hence, we decided to look at
machine learning techniques that can help solve this problem.
We observe that this is quite similar to the mapping used
to solve time series problems [18] in AI/ML. Different ML
approaches, like RNNs, LSTMs, and transformers have been
used to solve these types of time series problems. We next
look at which of these approaches will be suitable for this
problem.

IV. CROSS FREQUENCY BM USING TIME SERIES DATA

As we discussed earlier, ML can help to drastically reduce
the time associated in BM by incorporating information about
the channel and predicting the best k beams. Prior work [11],
[12] focused on using the FR1 measurements at the current
timestep to exploit the correlation between the FR1 and
FR2 measurements. We observed that this correlation can
be composited with the correlation between measurements
at consecutive time steps i.e., the time series data of FR1
measurements helps with better prediction of FR2 beams.

The most common techniques to deal with time series
data include RNNs, LSTMs and transformers. We ruled out
RNNs as a potential solution since they suffer from vanish-
ing/exploding gradients [6] and hence won’t be able to capture
the time series nature of this data. We observe comparable
accuracy results for transformers and LSTMs (Section V) with
the transformer doing marginally better. However, transformers
have a faster inference speed due to their ability to replace
recurrence to entirely focus on attention making them faster
while also increasing the parallelism of the model. On the
other hand, LSTMs incur a less number of Floating Point
Operations (FLOPs) [20], [21] that will result in lower energy
utilization to run the model. Our contribution in this paper is
to provide a framework to use time series data, so we provide
the various options through which this data can be utilized
for beam management, while also outlining the tradeoffs
associated with the same.

• Model Structure: Table I and Table II show the structure
of our LSTM and transformer models. We use standard
LSTM blocks of the Keras library. The LSTM model
consists of 5 LSTM cells and the transformer model
consists of 4 transformer blocks (Figure 2) to process
sequential data. These layers are followed by dense layers
that help to obtain the FR2 data values for the requisite
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Layer Output Shape Parameters
Input (10,504) 0

LSTM 1 (10,256) 779264
LSTM 2 (10,256) 525312
LSTM 3 (10,128) 197120
LSTM 4 (10,64) 49408
LSTM 5 (10,32) 12416

Dense (128,) 4224
Dense (504,) 65016

TABLE I: Different layers used in the design of LSTM

Layer Output Shape Parameters
Input (10,504) 0

Transformer Block 1 (10,504) 256159
Transformer Block 2 (10,504) 256159
Transformer Block 3 (10,504) 256159
Transformer Block 4 (10,504) 256159

Average Pooling (504,) 0
Dense (128,) 64640

Dropout (128,) 0
Dense (504,) 65016

TABLE II: Different layers used in the design of transformer

Multi-Head Attention

Input

Feed-Forward Layer

Feed-Forward Layer

Normalization Layer

Dropout Layer

Fig. 2: The structure of every individual transformer block

channels (504 in our current implementation) that help
us identify the k best beams for BM.

• Training Procedure. Both these models are trained using
the data generated by our system-level simulation (more
details in Section V). We use sparse categorical cross-
entropy as the loss function and the Adam optimizer with
a learning rate of 0.0001 for training. The training process
for both the models required 40-60 epochs for our dataset.

We describe the steps involved in our cross-frequency beam
management algorithm in Algorithm 1. At every step, the FR1
data for the previous 10 timesteps is collated to act as the input
to the algorithm.

1) First, the FR1 data is normalized which helps to maintain
the numerical stability of the data.

2) Next, we run this data through a trained time series
model (transformer / LSTM) to provide the top-k beams.

3) These k beams are then measured, ensuring that a tiny

Algorithm 1 Beam Management function for cross-frequency
prediction

1: function CROSSFREQUENCYBM(FR1Data)
2: ProcessedData← DataProcessing(FR1Data)
3: topKBeams← TimeSeriesModel(ProcessedData)
4: topKMeasurements←Measure(topKBeams)
5: return ArgMax(topKMeasurements)
6: end function

Fig. 3: The layout of different cells used in our simulation
environment

subset of all the beams needs to be measured thus,
speeding up the beam management process.

4) Finally, the optimal beam from these k beams is chosen.

The design of our algorithm provides flexibility to choose
the value of k which provides a tradeoff between the mea-
surement overhead and accuracy. As we show in Section V,
the top-5 beams can provide over 99% accuracy using LSTMs
and transformers.

V. SIMULATION EXPERIMENTS AND RESULTS

In this section, we first briefly present our simulation
setup and go through the overall simulation methodology.
Subsequently, we discuss the simulation results obtained by
carrying out the simulation experiments.

A. Simulation Setup.

As ML-enabled 6G modem chipsets are not yet widely
available for experimental design and verification, we resort
to MediaTek’s custom-built System-Level Simulator (SLS)
to generate data using 3D ray tracing and subsequently use
3GPP-specified simulation parameters [22]. We use the two
frequencies 4 GHz (for sub-6 GHz/FR1) and 30 GHz (for
mmWave/FR2). Our SLS simulates an outdoor environment
consisting of 21 cells (as shown in Figure 3) for 1000
timesteps, with each timestep 5 ms apart. At every cell, we
consider a base station equipped with two co-located uniform
linear arrays for both frequencies. We run our simulations for
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Fig. 4: Top-1, Top-3, and Top-5 accuracy for different models.

a total of 100 UEs. We consider both stationary and mobile
UEs (up to 30km/h).

B. Simulation Methodology.

We compare our methodology of using time-series data
with the prior work [11], [12] that suggested the use of fully
connected neural networks (FCNN) to determine the best beam
in FR2. The FCNN model consists of an input layer and four
hidden layers all having the same number of neurons. All
the layers are activated with the ReLu function [23] followed
by the dropout function [24], except the last layer which
is activated with the softmax function [25]. In addition to
using the FCNN model, we also show the results for an RNN
model as a baseline comparing with our proposed LSTM and
transformer models. All the models used in our simulation are
developed using Keras [26]. While we use the entire models
for our simulation study, using Keras provides us the benefit of
using the TensorFlow Lite Converter which can easily convert
our models to run efficiently on UEs.

We use a 90-10 train-test split for our simulations. During
the training phase, we use an 80-20 train-validation split.
We compare the models based on the Top-1 accuracy, Top-
3 accuracy, Top-5 accuracy, and the number of floating point
operations (FLOPs) required for every instance of inference.
We obtain the FLOPs for the FCNN and transformer models
using the keras-flops library [27]. However, as there is no way
to find the FLOPs for RNN and LSTM, we do not share the
FLOPs for those models.

C. Results

We measure the accuracy for the scenario using all 21 cells
from our simulation environment in Figure 4. We observe
that the transformer model outperforms all the other models
(FCNN, RNN and LSTM). While RNN performs poorer com-
pared to the FCNN model due to its difficulties in capturing
patterns in longer sequences, LSTM does indeed perform
better than the FCNN, but slightly worse than a transformer.
Further, as we see in Figure 5, a transformer requires far fewer
number of FLOPs compared to the FCNN. However, as shown
in [20], [21], LSTMs will require even fewer FLOPs.

This difference in trends for the FLOPs for the FCNN and

FCNN TF#1 TF#5 TF#10 TF#20 TF#40
Model

0
50

100
150
200

FL
OP

s (
m

illi
on

s)

Fig. 5: Comparing the number of Floating Point Operations
required for all the different models.
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Fig. 6: Top-1, Top-3, and Top-5 accuracy for transformer
variants. (TF n refers to TF with window size n)
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Fig. 7: Top-1, Top-3, and Top-5 accuracy for LSTM variants.
(LSTM n refers to LSTM with window size n)

transformer is due to the inherent design of the two models.
In the case of an FCNN model, the number of multiply-
accumulate operations increases as the number of FLOPs
increases quadratically with the increase in the number of
neurons [28] whereas, for a transformer, the number of FLOPs
increases linearly. Thus, this has greater implications while
modifying the size of the model, which is why we advocate
the use of a transformer.

Further, we also show a micro-benchmark for the trans-
former varying the window sizes trying to converge to an
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optimal window size. We observe that the accuracy of the
model increases rapidly as we increase the window size from
1 to 10, with very little increase from 10 to 20, but then we
observe a drop at window size 40, as shown in Figure 6. This
tradeoff is important especially since the number of FLOPs
required by the model increases as the window size increases
as we observed in Figure 5.

Similarly, we also show a micro-benchmark for LSTMs
while varying the window size. Similar to the transformer, the
accuracy of the model increases while increasing the window
size from 1 to 10, but then drops at 20 and 40 (Figure 7). In
a way, LSTMs are constrained to utilize less amount of data
compared to the transformer.

VI. CONCLUSION

In this paper, we introduce a new ML framework which
explores using time series based transformers and LSTMs to
efficiently learn the historical channel measurement of sub-6
GHz wireless channels. As mmWave channel characteristics
are more complex and expensive to learn, we subsequently
use this sub-6 GHz wireless channel characteristics, learnt
over time, to efficiently predict the channel information and
BM in high frequency mmWave channels for 6G wireless.
The System Level simulation results demonstrate that our time
series based learning of beam patterns in sub-6 GHz channels
results in up to 99.5% top-5 accuracy for beam prediction and
reduces the BM overhead by over 50% in mmWave channels
compared to existing approaches. We hope that our work
inspires the community to incorporate such learning based on
time series data for other aspects of beam management and
channel estimations.
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[10] A. Ö. Kaya and H. Viswanathan, “Deep Learning-based Predictive
Beam Management for 5G mmWave Systems,” in 2021 IEEE Wireless
Communications and Networking Conference (WCNC). IEEE, 2021,
pp. 1–7.

[11] M. Alrabeiah and A. Alkhateeb, “Deep Learning for mmWave Beam and
Blockage Prediction Using Sub-6GHz Channels,” IEEE Transactions on
Communications, vol. 68, no. 9, pp. 5504–5518, 2020.

[12] M. S. Sim, Y.-G. Lim, S. H. Park, L. Dai, and C.-B. Chae, “Deep
Learning-Based mmWave Beam Selection for 5G NR/6G With Sub-6
GHz Channel Information: Algorithms and Prototype Validation,” IEEE
Access, vol. 8, pp. 51 634–51 646, 2020.

[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” Proceedings
of the 31st International Conference on Neural Information Processing
Systems (NIPS’17, pp. 6000–6010, 2017.

[14] Y. Niu, Y. Li, D. Jin, L. Su, and A. V. Vasilakos, “A Survey of
Millimeter Wave (mmWave) Communications for 5G: Opportunities and
Challenges,” Wireless networks, vol. 21, no. 8, pp. 2657–2676, 2015.

[15] S. Hur, T. Kim, D. J. Love, J. V. Krogmeier, T. A. Thomas, and
A. Ghosh, “Millimeter Wave Beamforming for Wireless Backhaul and
Access in Small Cell Networks,” IEEE transactions on communications,
vol. 61, no. 10, pp. 4391–4403, 2013.

[16] M. Q. Khan, A. Gaber, P. Schulz, and G. Fettweis, “Machine Learning
for Millimeter Wave and Terahertz Beam Management: A Survey and
Open Challenges,” IEEE Access, vol. 11, pp. 11 880–11 902, 2023.

[17] K. Ma, Z. Wang, W. Tian, S. Chen, and L. Hanzo, “Deep Learning
for Beam-Management: State-of-the-Art, Opportunities and Challenges,”
arXiv preprint arXiv:2111.11177, 2021.

[18] S. Ahmed, I. E. Nielsen, A. Tripathi, S. Siddiqui, G. Rasool, and R. P.
Ramachandran, “Transformers in Time-series Analysis: A Tutorial,”
arXiv preprint arXiv:2205.01138, 2022.

[19] R. W. Heath, N. Gonzalez-Prelcic, S. Rangan, W. Roh, and A. M.
Sayeed, “An Overview of Signal Processing Techniques for Millimeter
Wave MIMO Systems,” IEEE journal of selected topics in signal
processing, vol. 10, no. 3, pp. 436–453, 2016.

[20] W. Li, J. Qin, C.-C. Chiu, R. Pang, and Y. He, “Parallel Rescoring
with Transformer for Streaming On-Device Speech Recognition,” arXiv
preprint arXiv:2008.13093, 2020.

[21] Y. Wang, Q. Wang, S. Shi, X. He, Z. Tang, K. Zhao, and X. Chu,
“Benchmarking the Performance and Energy Efficiency of AI Accelera-
tors for AI Training,” in 2020 20th IEEE/ACM International Symposium
on Cluster, Cloud and Internet Computing (CCGRID). IEEE, 2020, pp.
744–751.

[22] 3GPP Release 14, “Study on International Mobile Telecommunications
(IMT) parameters for 6.425 - 7.025 GHz, 7.025 - 7.125 GHz and 10.0
- 10.5 GHz,” 3GPP Technical Report, 2018.

[23] A. F. Agarap, “Deep Learning using Rectified Linear Units (ReLU),”
arXiv preprint arXiv:1803.08375, 2018.

[24] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A Simple Way to Prevent Neural
Networks from Overfitting,” Journal of Machine Learning Research,
vol. 15, no. 56, pp. 1929–1958, 2014. [Online]. Available:
http://jmlr.org/papers/v15/srivastava14a.html

[25] J. S. Bridle, “Probabilistic Interpretation of Feedforward Classification
Network Outputs, with Relationships to Statistical Pattern Recognition,”
in Neurocomputing. Springer, 1990, pp. 227–236.

[26] F. Chollet et al. (2015) Keras. [Online]. Available:
https://github.com/fchollet/keras

[27] Keras Flops. [Online]. Available: https://pypi.org/project/keras-flops/
[28] M. Hollemans, “How fast is my model?”

https://machinethink.net/blog/how-fast-is-my-model/.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 30,2024 at 15:25:20 UTC from IEEE Xplore.  Restrictions apply. 


