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ABSTRACT
Low Earth Orbit (LEO) satellites are an important facet of
global connectivity providing high speed Internet, cellular,
IoT connectivity and so on. Combined with the rich resource
availability on each satellite, LEO satellites represent a new,
emerging cloud frontier – the LEO Compute Cloud. However,
satellite mobility introduces non-trivial challenges when or-
chestrating applications for a LEO compute cloud, making it
harder to deploy applications without increasing the latency
and bandwidth costs. In this paper, we identify the concrete
challenges in using state-of-the-art terrestrial orchestrators
for a LEO compute cloud. We present Krios – a LEO com-
pute cloud orchestration system that hides the complexities
introduced by satellite mobility and enables a practical LEO
compute cloud. The design of Krios is centered around a
novel LEO zones abstraction that allows application providers
to specify where their applications should be available. Krios
provides crucial system support to enable the LEO zones ab-
straction, ensuring uninterrupted availability of applications
in LEO zones via proactive and predictive application han-
dovers. Our experimental evaluation of Krios with represen-
tative applications demonstrates a practical and efficient LEO
compute cloud, without requiring any disruptive changes in
applications and with modest system overheads. With Krios,
LEO orchestration requires just ~1 application instance at
a time to maintain the same availability as what prior work
achieves by deploying application instances on all satellites or
by performing 6-10 times more frequent expensive handovers.

CCS CONCEPTS
• Computer systems organization → Cloud computing.
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1 INTRODUCTION
Low Earth Orbit (LEO) satellite networks have transformed
global connectivity offering high-speed broadband [13–16,
66], cellular services [49, 70, 77, 79, 101, 103], IoT connec-
tivity [11], as well as augmenting connectivity in a variety of
disaster-affected and remote settings [20, 22, 45, 49, 67, 73,
79, 90, 101, 103]. In addition to the large megaconstellations,
there are proposals for space datacenter from academia [31],
government [80], as well as industry [12]. This has led to LEO
satellites, each comprising up to 250 computer nodes [24], to
be considered a new, emerging cloud frontier for deploying
services such as network functions [59] as well as edge func-
tions similar to terrestrial ISPs [44] and mobile networks [1].
Prior work has studied a diverse set of LEO compute applica-
tions including cellular network functions [70, 71], content
delivery networks (CDNs) [28, 84] and IoT aggregation [85].
Concretely, we look at two applications in this paper – serving
trails at a national park (web serving) and aggregating sensor
information from oil rigs (IoT aggregation).

A prerequisite for achieving the desired outcomes when
deploying these applications is ensuring they are deployed on
satellites that can serve the specific geographic areas they are
intended for. This is a difficult task as LEO satellites move
at high speeds of over 27,000 km/hr and hence are directly
accessible for a maximum of just 4.5 minutes (median 3.5
minutes [30]). However, it is important for applications to
be deployed on satellites directly accessible from the users,
as the latency and bandwidth cost otherwise increases dra-
matically (Figure 1). A trivial approach, taken by most of
the prior work [40, 41, 84, 85, 87], is to deploy the same
application on all satellites such that it is always directly ac-
cessible. Another approach taken by prior work is to deploy
stateless cellular network functions [70, 71] on all satellites
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Figure 1: Comparing the bytes consumed and latency incurred
for an application deployed on both an accessible (green) and
an inaccessible (red) satellite.
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Figure 2: Availability (defined as direct access) of a stateless IoT
aggregation application deployed on 5%, 10%, 20%, and 30% satel-
lites in the first Starlink shell during one orbital period (100
mins) compared to just 1.03 instances with Krios.

with the state residing on the user terminals. Our analysis in
Figure 2 for a stateless function shows that an application in-
stance needs to run on at least 475 satellites (as opposed to all
satellites proposed in prior work), provided they are deployed
uniformly (otherwise you need more instances), to ensure
continuous availability1 to a single stationary end user for a
100 minute interval. This gets exacerbated if the application
requires state for every instance. Regardless, maintaining at
least 475 replicas (and state if applicable) per application is
not only a major orchestration challenge but also an inefficient
use of fixed satellite resources, severely limiting their utility
by limiting the number of applications that can be supported.

Alternatively, prior work [27], including our preliminary
findings [28], demonstrated that continuous application avail-
ability can be achieved through application handovers, akin
to handovers in cellular networks. Handovers in LEO com-
pute are significantly different than cellular handovers, which
primarily involve handing over a network connection taking
about 30-60 ms [3, 82] and are triggered reactively when a
user moves out of range of a (stationary) base station. On the

1In this paper, we define availability by focusing exclusively on application
downtime caused by satellite movement to specifically study the impact of
satellite motion and observe the gains made by Krios.

other hand, as the infrastructure is itself moving for LEO com-
pute cloud, in addition to migrating the network connections,
handover entails running a new application instance (along
with its state) on the new satellite. Depending on the specific
scenario, the application (image and the state) may need to
be rebuilt or migrated from another satellite. Further, even if
the application image and state is available on the new satel-
lite, initializing it takes non-negligible amount of time which
needs to be hidden while performing the handover. Empirical
network measurements on Starlink suggest handovers mov-
ing from reactive [64] (handovers triggered by the satellite
moving out of sight) to periodic [57, 78, 95] (handovers occur-
ring periodically every 15 seconds). A plausible explanation
for this switch is better resource utilization for satellites (in-
creased elevation angles reduce energy utilization by reducing
distance between satellites and users [95]) and performance
(packet losses during handovers [64]). We argue that this
change only addressed the symptom – reactive handovers
lead to packet losses which the frequent 15-second handovers
mask, however, they raise other issues like additional bytes on
the network due to many (unnecessary) handovers or loss of
performance by rebuilding the application (and the state [28])
due to eager handovers, even when the satellite could serve
that region for longer [95].

We posit that a key reason why a lot of prior work chooses
these periodic or reactive approaches is a result of missing
necessary abstractions needed to specify where applications
need to be available (like terrestrial zones). The continuous
motion of the satellites makes it harder for terrestrial orches-
trators to identify satellites for deployment, something the
zone abstraction helps with terrestrially. Further, even if the
orchestrator can determine the correct satellite initially, the
orchestrator has missing systems support to deal with mobility
and ensure availability by accurately identifying deployment
targets and triggering handovers in a timely manner. The avail-
ability of satellite path models [53] offers a new opportunity
to accurately predict the timing and destination of the han-
dovers, instead of relying on signal strength measurements as
done in cellular networks. Current orchestration stacks, tai-
lored for a fixed, terrestrial compute infrastructure, lack these
elements because they are assume an inherent tight coupling
between the orchestrators and the underlying hardware.

In response, we present Krios – a software orchestration
system that enables application providers to deploy their ap-
plications on LEO satellites without having to worry about
the mobility of the infrastructure, i.e., the satellite nodes. The
key design elements of Krios are:
• A new software-defined LEO zones abstraction that allows

application providers to specify the geographical region(s)
where their application should be available. This abstrac-
tion is essential for controlling and managing application
placement within the dynamic LEO satellite infrastructure.
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LEO zones enable application providers, for the first time
to the best of our knowledge, to specify with fine gran-
ularity the area of interest they want their application to
serve, without requiring any changes in the application
deployment workflows.

• Krios introduces the use of satellite path prediction models
as a fundamental building block for proactive and predic-
tive application handovers onto the physically accessible
infrastructure, thus maintaining the geo-stationarity of ap-
plications to ensure continuous availability. We design this
to not only provide mechanisms to perform handovers, but
also to minimize the number of handovers, thus minimiz-
ing the bandwidth consumption, latency impact and any
downtime due to satellite motion.
The outcome is a new orchestration system for the LEO

compute cloud, which loosens the coupling between the or-
chestration stack and the underlying physical infrastructure.
Krios can be seamlessly integrated with terrestrial orchestra-
tors, extending their use in space. In summary, this papers
makes the following contributions:
• Articulate the non-trivial challenges in scheduling LEO

compute functions (§3) to serve specific regions;
• Make the case for a new LEO zones abstraction (§4) and

present the design of a new LEO compute orchestration
system enabled by it, which offers a practical and effective
LEO compute cloud via proactive handovers (§5);

• Experimental evaluation with several LEO compute appli-
cations justifies the design choices in Krios and demon-
strates its effectiveness to achieve end-to-end benefits –
providing similar latency and bandwidth savings compared
to prior work while using 400x fewer instances, reducing
the frequency of handovers by 6x compared to current
Starlink policies, and increasing availability from 5% to
100% compared to current state of the art orchestrators
with minimal overheads (§7).

2 BACKGROUND
Lower satellite manufacturing and launch costs [2, 33, 46, 74]
have resulted in accelerated deployment of LEO satellites [55].
This has driven the usage of these satellites for a number of
use cases such as broadband Internet [13–16, 19, 20, 23, 66,
73, 75, 77], serving disaster affected areas [22, 45, 67, 90],
IoT connectivity [11] via communication satellites, imagery
via observation satellites [25, 35], climate monitoring [7, 102],
and many more. These satellites can vary in size – from
smaller 3U (10x10x30 cm) Planet Labs dove satellites to
larger 7x3.5 m Starlink v2 satellites. For most of our discus-
sions in this paper, we use the Starlink constellation, which
currently operates over 6400 LEO satellites [55]. Starlink
currently operates over 170 ground stations [4, 58] and plans

to use Google and Microsoft data centers [6, 38] as additional
ground stations.
Operating Model. This paper assumes the following model
of the LEO ecosystem. The physical infrastructure of LEO
constellations comprises of satellites in space and ground sta-
tions on Earth. The satellites communicate with the ground
stations using wireless radio links using ground satellite links
(GSLs). These links generally have Gbps capacities – Star-
link GSLs have 18-23 Gbps [94] while Planet Labs GSLs
have up to 1.6 Gbps [42]. The satellites communicate with
each other using inter-satellite links (ISLs), which could be
radio or laser based. Starlink satellites have up to 250 com-
puter nodes onboard every satellites [24]. Similarly, Planet
Labs satellites are equipped with GPUs that aid with machine
learning computations. Further, observational satellites have
GBs/TBs storage to capture the TBs of data they generate
every day [9, 43, 88].

A key assumption we make in this paper is that the satellites
(when actively serving) are always connected to the ground
stations. For the communication satellites, this is true today
as all the internet traffic served through these satellites needs
to be routed to terrestrial datacenters or points of presence
(PoPs) through ground stations using a combination of ISLs
and GSLs (the bent-pipe model [69]). Even observational
satellites are expected to be equipped with ISLs, ensuring
continuous connectivity in the next few years, with successful
tests announced by Planet Labs recently [37]. We assume
the control plane of the LEO compute orchestration stack is
overlaid through the GSLs and ISLs which help a terrestrial
orchestrator (e.g., Kubernetes) reach all the satellites.
Target Applications. A lot of prior work has shown LEO
compute applications helping to reduce the bandwidth bottle-
necks along with reducing latency.

The increased usage of communication satellites [23, 75]
has led to bandwidth congestion [17, 36, 60, 62, 76] motivat-
ing the need for an edge similar to the use of edge computing
terrestrially [18, 26, 54, 92]. Prior work has demonstrated
the feasibility of deploying applications on a ‘LEO edge’, in-
cluding web servers [28], CDNs [84], IoT aggregation, video
conferencing servers [85], etc. While deploying applications
on the ground stations does constitute of an edge, it does
not lead to reduced latency or bandwidth consumption. Con-
cretely, user terminal to ground station latency can be as high
as 150 ms [57] rendering its benefits as an edge ineffective.

On the other hand, the rapid increase in the number of
observation satellites and the ensuing growth of collected
data has bottlenecked the GSL links, resulting in satellites
being unable to transmit all of the generated data [39–41, 96],
as done in the bent-pipe mode. Further, sending such large
amounts of data results in significant delays of up to a few
hours (or even days) in getting insights from this data. To
address these challenges, prior work [39–41, 96] has proposed
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deploying ML inference on satellites to gain faster insights
by reducing of data that needs to be transmitted back.

Regardless of the specific application, it needs to be or-
chestrated to ensure continuous availability in the desired ge-
ographical region. In this paper, our goal is to streamline the
application deployment process similar to terrestrial container
orchestration systems, including the managed Kubernetes ser-
vices such as AKS, Amazon EKS, GKE, etc. We next present
the specific challenges we have identified that motivated us
to design a new system – Krios.

3 TECHNICAL CHALLENGES
Missing Abstractions for Targeted Deployments. A lot of
terrestrial applications are designed to benefit from localiza-
tion, i.e., to exploit the spatial locality of their users. In a ter-
restrial edge/cloud offering, providers rely on the abstraction
of availability zones (or regions) to select one or more zones
close to their users where their applications are deployed
and are available. However, this abstraction only holds when
the underlying physical infrastructure is stationary. In other
words, infrastructure is tightly coupled to the zone abstraction.
In contrast, in the case of LEO compute, the infrastructure is
constantly moving. Therefore, similar tight coupling is not
feasible as the satellite nodes move away in a few minutes,
rendering the ‘infrastructure defined zone’ paradigm unusable
for LEO compute. Therefore, it is imperative to rethink the
abstraction of zones for LEO compute that accounts for this
rapid motion of the infrastructure.

Supporting any such notion of zones for application de-
ployment requires a system and policies that can hide the
dynamism of the infrastructure. Addressing these challenges
forms the next set of technical challenges faced in building
the system presented in this paper.
Missing LEO Compute Orchestration System. The main
difference between a terrestrial compute cloud and a LEO
compute cloud is the intermittent visibility of the LEO satel-
lites. Every satellite is accessible for a maximum of 4.5 min-
utes [30]. However, the control plane of the current off-the-
shelf orchestration stacks is not equipped with the mecha-
nisms necessary to handle this level of dynamism. They are
designed to be reactive to changes and rely on monitoring
the state of applications (liveness) or infrastructure (failure)
to detect when to take corrective actions. Barring failures or
capacity issues, an application in a running state is usually not
moved to other nodes (even in the cases when applications are
migrated due to user mobility, the migration is still reactive
to user motion). If a LEO compute cloud uses such reactive
mechanisms, it will lead to frequent application downtime
as the handover process requires a few minutes to detect and
perform any corrective actions [28]. Addressing this requires

Figure 3: Defining the space projected region for a LEO zones
based on elevation angle constraints.

Figure 4: Statically de-
fined vs. LEO zones.

metadata:

name: nginx-pod

labels:

app: nginx

leozone: '37_-122'

radius: '100'

Figure 5: Deployment changes
to use Krios.

the orchestration stacks to identify proactive triggers with
respect to the dynamism in the infrastructure.

4 LEO ZONES – THE MISSING
ABSTRACTION

We introduce a new software-defined LEO zones abstraction
that enables defining availability zones based on the location
of the end users and not the physical infrastructure. This ab-
straction of LEO zones is necessary as it allows for deploying
applications only on satellite(s) that can actually serve the
end users instead of deploying them on all the satellites to
contend with the motion of the satellites. At a high level, this
serves the same utility as zones in terrestrial edge/clouds and
provides an illusion of a geo-stationary infrastructure over
moving LEO satellites. This enables leveraging the geograph-
ically distributed continuum of compute resources in the form
of LEO satellites compared to the sparsely located terrestrial
compute infrastructure. Additionally, our definition of LEO
zones grants application providers the added flexibility to
define their own zones based on their needs, in software.

LEO zones, similarly to the terrestrial edge/cloud zones,
are incorporated as part of the application deployment con-
figuration to specify the geographical region of availability.
Just like how a terrestrial zone guides the orchestrator to use
nodes from a designated cluster, the definition of LEO zones
guides the LEO compute orchestrator about which satellites
can serve a specific LEO zone and to select the satellite for
deploying an application. However, unlike in terrestrial or-
chestrators, the choice is made not among the nodes known
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to a zone a priori, but rather from a dynamically determined
set of satellite nodes based on their present (and anticipated)
geopositioning. The selection is based on the LEO zone’s
space projected region, which is a cone that is calculated
based on the allowed elevation angle. The elevation angle
determines a LEO satellite’s instantaneous accessibility from
a given point on Earth and also the duration for which a partic-
ular satellite remains accessible. For instance, in Figure 3, the
LEO zone definition would restrict the orchestrator to only de-
ploy applications on the blue-colored satellites. We show how
the space projected region is calculated from the given LEO
zone in Appendix A. While we stick with circular regions for
simplicity in this paper, similar calculations can be done for
non-trivially shaped regions (Appendix B). Essentially, the
space projected region of a LEO zone is the intersection of
the space projected regions (i.e., a cone) of all points in the
LEO zone.

Although intuitively straight-forward, the LEO zones ab-
straction is novel and, to the best of our knowledge, the first of
its kind. It is different from the way zones have been defined
conventionally for terrestrial infrastructure: i.e., instead of the
infrastructure defining the availability zones (and the ensuing
tight coupling), LEO zones enable application providers to
define their own availability zones based on their end users.
While one could choose to provide a fixed set of LEO zones
when the applications and their users are well understood,
it doesn’t generalize to the cases when the workloads aren’t
known apriori. This isn’t the case terrestrially where the in-
frastructure is sparse and hence the fixed set of terrestrial
zones is a necessity. Nevertheless, even a fixed set of LEO
zones is a new abstraction as they are very different in terms
of what they provide and how they are used compared to the
conventional zones in a terrestrial cloud/edge.

We show the benefits of such custom-defined LEO zones
using an illustrative example. Researchers from two universi-
ties, Georgia Tech and University of Georgia (UGA), want to
deploy a LEO compute application catering to both campuses.
If zones are defined as per terrestrial zones, we can assume
that Atlanta and Athens will have their own zones. However,
neither of them alone will suffice since they cannot provide
continuous coverage to all the intended end users. If the ap-
plication is deployed in only one zone, users in the other zone
will intermittently require multiple hops to reach the satellite,
thus leading to increased bandwidth and latency. To mitigate
this problem, the same application would need to be deployed
in both zones. However, LEO zones would enable the appli-
cation provider to define a zone that can cover both campuses
so that, instead of two instances, a single application instance
would suffice (Figure 4).

Figure 6: Workflow of application deployment in Krios.

5 KRIOS – THE MISSING SYSTEM
Krios is a software system that incorporates the mechanisms
and policies missing from the state of the art orchestration sys-
tems (such as Kubernetes [10]) to equip them to support LEO
zones and thus enable a LEO compute platform. Leveraging
established orchestrators ensures that the LEO compute cloud
incorporates well-vetted, standardized components from ex-
isting, mature software stacks to avoid reinventing the wheel.

LEO constellation operators use Krios to enable deploy-
ment of unmodified containerized applications (LEO compute
applications) in their constellations. These operators just need
to specify their satellites’ orbital information (through Two
Line Elements (TLEs) [8]). Doing so enables LEO opera-
tors to offer a familiar interface, similar to terrestrial edge/-
cloud systems, for deploying LEO applications (like CDNs,
IoT aggregators, video calling applications, etc.). Application
providers only need to add two new labels while deploying
their application on Krios (Figure 5). The workflow for appli-
cation deployment on LEO compute using Krios is summa-
rized in Figure 6. While this paper focuses on containerized
applications, the design principles introduced are also appli-
cable for other paradigms of application deployment.

Unlike terrestrial deployments, Krios supports the addi-
tional capability to specify the target geographic zones – LEO
zones, and to ensure that applications remain available in
those zones despite the motion of satellites. This provides
benefits of reduced bandwidth usage and latency compared
to using terrestrial orchestration stacks. Krios achieves this
by determining suitable satellites for a particular LEO zone
and proactively hands over the application from them to the
next set of suitable satellites. This ensures that the application
is always directly accessible to the end users in the specified
LEO zones, thus maintaining geostationarity of the applica-
tion with respect to end users in the LEO zones.

Krios is built on top of an existing orchestrator such as
Kubernetes inheriting the rich state-of-the-art features out of
the box. These include replicasets that allow running multiple
instances of the same application and autoscaler deployments
that define thresholds to scale up or down application in-
stances. Krios only modifies the scheduler and introduces the
LEO controller that tracks all scheduled applications. Thus,
applying the Krios design principles to different deployments
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Figure 7: Krios augmented terrestrial orchestration stack.

can be done by a few minor engineering updates to the de-
ployment controllers.

Figure 7 shows the capabilities of current orchestrators
which are augmented by new capabilities designed as part
of Krios. In the remainder of this section, we describe the
design choices we make in Krios and discuss how they are
encapsulated by the different Krios components that help
Krios perform satellite mobility-aware orchestration to ensure
continuous LEO compute application availability.

5.1 LEO Zones Orchestration
The first step in deploying an application is to provide a way
for applications to specify a LEO zone where the application
needs to be available. Krios chooses the least disruptive way
to do so, by requiring application providers to specify the LEO
zone as part of the application deployment request. Coupling
LEO zones and applications together allows developers to
define their own zone without any additional overheads.

Supporting software-defined LEO zones increases the num-
ber of zones the LEO controller needs to track. For every
zone added as part of a new application, the scheduler and the
LEO controller need to determine which satellites are inside
the space projected region. On the contrary, if there were a
fixed number of zones, the computation could potentially be
shared among all the applications using the same LEO zone.
However, as we show later in this section, the design of Krios
design ensures that the overhead of supporting a LEO zone
is fairly negligible and would not impact the performance of
Krios even as the number of zones (applications) increases.

Once provided to a LEO orchestrator, the orchestration de-
sign must incorporate a LEO zone to decide where (on which
satellite(s)) the application should be deployed. Terrestrially,
a zone informs the orchestrator about the set of static nodes it
can consider while making any deployment decision. Since
the satellite nodes are constantly moving, the approach simply
does not work for a LEO compute cloud. An intuitive alterna-
tive is to maintain a time-varying data structure for all zones

that contains the list of satellites (nodes) that are currently
available in the zone. However, this data structure must be
constantly updated with the status of the nodes’ availability
from a zone, as a satellite could be accessible from a zone
for a few seconds to a few minutes depending on its orbital
characteristics [30]. Therefore, with no uniformity in satellite
availability patterns, maintaining the list of satellites available
in a LEO zone requires continuously computing the position
of all the satellites in a loop to determine which satellites
belong to a given zone. In addition to maintaining this list of
nodes, the orchestrator also needs to identify which satellite
is the best choice for deploying an application at a given time,
based on the location of the satellite and the LEO zone. This
requires continuously running another set of computations
across all the satellites accessible from a zone. A terrestrial
orchestrator does not need to perform any such computations
as its node membership changes (barring failures or hotplugs)
are rare and hence not considered as part of the design.

Instead, Krios incorporates the LEO Zones manager which
represents a zone using a set of functions that are evaluated on
demand to generate the corresponding zone state. The LEO
Zones manager consists of three functions invoked by the
different components of the orchestrator:
1. ‘node_leaving_zone‘ invoked by the LEO controller to

determine when a node is leaving the LEO zone;
2. ‘get_zone_nodes‘ called during the filtering stage by the

scheduler to get the list of nodes in the LEO zone; and
3. ‘get_best_node‘ called during the scoring stage by the

scheduler to find the best node to deploy the application.
Doing so, Krios only invokes functions in a on-demand fash-
ion as opposed to continuous computations. Krios runs all
the three functions once every handover cycle, which occur
on average once every 3 minutes. This is in contrast to what
would be required to maintain a time-varying data structure
for all zones and all satellites. That would entail running the
‘get_zone_nodes‘ and the ‘get_best_node‘ functions for every
scheduler tick for every LEO zone, or at least each time a
node moves to a new zone. Note that nodes leave zones at
a higher frequency than the frequency at which handovers
need to be performed as Krios heavily prefers scheduling
applications on nodes that are accessible to the LEO zone for
a longer period.
LEO Zones Shape. Our current implementation considers
circular LEO zones to simplify the calculations using the
symmetrical structure of circles. A circular representation is
a natural fit for satellite communications since the satellites
that can serve a user forms a conical representation, which
when projected results in a circle. As we show in Appendix B,
this design is amenable to different shapes as well.
LEO Zones Size. Finally, the size of a LEO zone has a very
crucial and unintuitive implication to how the space projected
regions behave. The projected region for a LEO zone is the
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LEO zone (km) 0 25 50 75 100 125

Projected Region (km) 1022 995 968 940 913 886

Table 1: Radius for LEO zone and its space projected region.

intersection of the projected regions of all points in it. There-
fore, as the size of the LEO zone increases, the size of the
projected region reduces which in turn increases the frequency
of handovers. We show the geometrical calculations for deter-
mining the size of the space projected region in Appendix A.
Table 1 shows the inverse relation between the radius of the
LEO zone and its projected region for different sizes. As the
size of the projected region decreases, so does the time be-
tween handovers. Therefore, Krios restricts the size of a LEO
zones to a maximum 100 km radius so that there are more
satellites available to service the region, and every satellite
can service the region for at least 3 minutes. This size limit is
large enough to be able to support larger cities within a single
LEO zone (A 100 km radius or 31,000 km2 area).

5.2 Krios Application Handovers
When a satellite running LEO compute application moves
out of the projected region of its LEO zone, the application
is no longer directly accessible to the end users in the zone.
This is unlike a terrestrial edge/cloud, where the controller
only focuses on failures and load spikes to maintain high
availability. Instead, the LEO controller requires a mechanism
to migrate applications from one satellite to another to ensure
continuous availability of the application in the LEO zone.
We refer to this migration as application handovers.

An approach to perform these application handovers could
be using the cold-standby approach which entails having
multiple ‘cold’ application instances that can be booted when
required. However, this would require these instances running
on at least 475 satellites (Figure 2) resulting in high resource
utilization as well as increased overhead for managing these
applications. Krios instead monitors the satellite running the
application using the LEO controller, and initiates a handover
when the satellite is about to move out of the LEO zone. This
handover, driven by the handover manager entails initializing
a new instance of the application on the new satellite and only
deleting the older instance after the new instance is in the
running state.

Further, in LEO compute, the availability of an applica-
tion from the perspective of the orchestrator (determined by
heartbeats) may not align with its availability from the LEO
zone. As a result, it is conceivable that an application could be
running on a satellite inaccessible to the LEO zone, but reach-
able from the orchestrator (through GSL or ISL hops) within
a latency bound. This distinction is fundamentally different
from terrestrial orchestrators, where availability in relation to
the orchestrator is sufficient, as the position of the nodes isn’t

a concern. Therefore, the LEO controller determines when a
handover is needed based on when the satellite hosting the
application leaves the space projected region of the LEO zone
using the ‘node_leaving_zone’ function exposed by the LEO
Zones manager. This creates another set of independent, time-
sensitive triggers that are driven by the satellite motion. We
use satellite path models (SGP4 [53]) to determine when a
particular satellite is exiting the LEO zone of an application
and thus, triggering the handover to ensure availability and
thus, geostationarity of the application.
When are Handovers Triggered? The LEO controller tracks
all newly scheduled application instances. It creates a new
thread that will find when the satellite is leaving the LEO zone
using the ‘node_leaving_zone’ method. This thread sleeps un-
til this trigger is activated and initiates the handover process.

However, the application handovers in LEO compute differ
from the handovers in the cellular context as the entire appli-
cation (and its associated state) is migrated instead of just the
network connection and state. The initialization of the new
instance of an application takes a non-trivial amount of time
since it involves multiple steps such as pulling the applica-
tion image, resource allocation, health checks on startup, etc.
For instance, a k8s pod takes 5 seconds to initialize[97, 98]2.
While this initialization time can be minimized, it cannot be
eliminated; and would always result in a downtime for the
application every time a handover is triggered, i.e., every 3
minutes on average. Hence, if this handover trigger is reactive,
i.e., the handover is triggered at the instant when a satellite is
about to move out of the space projection region, the appli-
cation will not be accessible during the initialization of the
newer instance. Therefore, these handovers need to be done
proactively to hide this delay. Krios estimates the additional
time related to initialization, application transfer, etc., to per-
form proactive, just-ahead-of-time handovers to maximize
uptime. The amount of time to be masked is calculated as

△t = △te + ti + tAT (1)

where △te is the time error due to the inaccuracy of path
model, ti is the time to initialize the application on the new
node, and tAT is the time needed to move the application
image/state (if needed). For the specific path model (SGP4)
and orchestration stack (Kubernetes) we use, △te is about
1-3 km/day [99] which translates to about 4.6us, ti is 5 sec-
onds [97, 98], and tAT depends on the size of the application
image. For the specific applications we use in §7, tAT is 0.2-1
seconds. For the specific path models and orchestrator we use,
ti and tAT play a bigger role compared to te .

2Note that these benchmarks correspond to the orchestrator and worker node
being collocated. In our case, there is added latency between the orchestrator
and worker node that exacerbates this time.
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How are Handovers Performed? Krios uses the handover
manager to perform the handover process. The handover man-
ager is triggered by the LEO controller when the application
is about to be unavailable. A key requirement is that the or-
chestrator is able to schedule a new (originally idle) instance
even when the current healthy instance is running (and serving
user traffic without being overloaded). The handover manager
initiates a new application instance, monitors its status and
only once the new application instance is in the ‘Ready’ state,
the handover manager kills the older application instance.

The handover process described so far is necessary even
if the application image (and its associated state) is readily
available on the desired satellite node. In certain cases, the
application image and its state may need to be migrated as
part of the handover process. Further, this process can bene-
fit from incorporating the rich body of prior work including
application container checkpoint/restart (CRIU) [100] or live
migration techniques that have been used for application mi-
gration in other contexts [89, 91], but are overall expected to
introduce higher data transfer requirements. We leave further
optimizations to the handover process to future work.
Where to Schedule the Handover Instance? Terrestrially,
the scheduler primarily focuses on resource availability while
making a scheduling decision. The scheduling pipeline con-
sists of multiple stages, but the ones of interest to us are the
filtering stage and the scoring stage. The filtering stage filters
out the nodes that do not satisfy the resource requirements
of the application. The scoring stage then ranks the nodes
based on the scoring function which is a combination of mul-
tiple metrics such as resource availability, node health, etc.
The scheduler then selects the node with the highest score to
deploy the application.
Filtering Stage. For LEO compute, the current filtering stage
functions are insufficient as they do not take into account
the position of the satellite with respect to the LEO zone of
the application, which could lead to the application being
deployed on a satellite that is currently not accessible from
the LEO zone (Figure 9a). Therefore, Krios augments the
filtering stage to filter nodes based on their presence in the
space projected region of the LEO zone, in addition to the
default resource availability requirements. This is done by
computing the position of the satellites using satellite path
models at the current time and evaluating whether the satellite
lies within the space projected region (using the ‘get_zone_-
nodes’ function exposed by the LEO Zones manager). This
allows Krios to filter out nodes that may satisfy the resource
availability requirements but are located farther away from
the LEO zone.
Scoring Stage. Similarly, Krios augments the scoring stage
to prioritize a node that will remain accessible to the LEO
zone for the longest period of time. This is in contrast to other
approaches, such as in the cellular context, where the user

is generally handed over to the base station that is closest.
Kubernetes, on the other hand, uses a random selection on
nodes that satisfy the same affinity and priority requirements.
Krios requires an additional scoring mechanism to ensure
that a selected node can serve the application for the longest
period of time without requiring frequent (and bandwidth-
consuming) handovers. For circular regions, the symmetrical
structure allows us to use the dot product between the velocity
vector and the position vector of the satellite with respect
to the center of the LEO zone. This ensures that satellites
that are the farthest (but inside the space projected region of
the LEO zone) and moving towards the center of the LEO
zone are assigned a higher score and thus, help reduce the
number of handoffs. While such a heuristic would not work
for arbitrary shapes, that can be handled by projecting both
the space projected region and the satellite trajectory on Earth
to calculate how long the satellite will be accessible, as done
in [21]. However, as the number of applications and LEO
zones increases, it will require more sophisticated policies
and better tuning of some of the parameters in Krios, that are
part of future work.

5.3 Application State Management
A lot of prior work has advocated deploying stateless appli-
cations (or applications having an immutable state) on LEO
satellites such as stateless cellular functions [70, 71], state-
less video conferencing application [27, 85] and stateless IoT
aggregation [84] (handling satellite motion by replicating the
application on all the satellites). In such cases, Krios can
be used to orchestrate the applications and ensure the same
benefits with 400x lesser application instances.

However, other prior work has discussed potential perfor-
mance benefits achieved by state transfer for CDNs [84] and
web caching [28]. State transfer for LEO compute applica-
tions is enabled by the high bandwidth values for both the
ISLs (up to 200 Gbps) and the GSLs (18-23 Gbps). Even
applications with large sizes can be migrated during the 5-
second handover process, which occurs every 2-3 minutes. It
is important to note that these applications are such that their
state can be rebuilt, therefore state transfer only impacts their
performance but not their correctness.

An implicit assumption in terrestrial application deploy-
ments and orchestrators is the availability of networked stor-
age (volumes) across the nodes of a cluster. This assumption
is not valid for LEO compute as the physical presence of the
networked storage on a satellite node would significantly im-
pact the access latency – accessing storage present on another
satellite or ground station will lead to increased bandwidth
consumption and latency, thus negating the benefits of a LEO
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compute cloud. Therefore, the storage for applications run-
ning on a satellite need to reside on the same satellite which
can restrict the applications suitable for a LEO compute cloud.

To address the second class of applications, Krios uses an
explicit state handler as an additional orchestration compo-
nent for these applications. Krios provides a Krios-volume
construct to store the state of the application, as is done in
most edge/cloud settings. The state handler ensures that this
Krios-volume is locally available to the application instance,
even as the application gets handed over to other nodes during
its lifetime. Krios implements state handovers proactively –
similar to application handovers. While this may lead to some
performance hit, e.g., the new instance not having the new
cache entries added during the time of handover, this time
is very small – just a few seconds. This can be addressed by
leveraging techniques from extensive prior work on virtual
storage migration [32, 34, 51, 72].

5.4 Krios Implementation
The current prototype implementation of Krios is built on top
of Kubernetes and treats a pod definition as a LEO compute
application. It uses the configuration parameters of all the
satellites as two-line elements (TLEs) to predict the position
and velocity of a satellite in the True Equator Mean Equinox
frame. Krios is implemented as a Python package. Off-the-
shelf, it can support the SGP4 path model and Kubernetes.
The entire Python package consists of about 1000 lines of
code. Our implementation of Krios prototype is available at
https://github.com/GTkernel/krios.

6 EVALUATION METHODOLOGY
The goal of the evaluation of Krios is to establish that Krios
is effective in providing applications the benefits they expect
when deployed in a LEO compute cloud, compared to other
possible deployment strategies for LEO compute cloud, and
compared to other approaches used in state-of-the-art orches-
tration systems. Specifically, we ask the following questions:
• How well does Krios provide LEO compute benefits to

applications (§7.1)?
• How effective are the mechanisms and policies introduced

by Krios compared to current orchestration systems (§7.2)?
• What impact does Krios have operationally with varying

conditions (§7.3)?
Experimental Methodology. To the best of our knowledge,
there is no LEO compute cloud orchestration system to com-
pare as a baseline. Hence we compare our results against
Kubernetes to show the gaps of current off-the-shelf orchestra-
tion stacks. We also create incremental baselines augmenting
stock Kubernetes to show the impact of the individual Krios
components. We run all our experiments for 100 minutes (just
over the orbit time of 96 minutes) to show the validity over

an entire orbit duration. We repeat the experiments multiple
times to show the consistency of our results.
Emulation Setup Implementation. Existing emulation plat-
forms Celestial [85] and StarryNet [68] are designed to demon-
strate the feasibility and the benefits of LEO compute by repli-
cating the applications on all satellites. Celestial deploys all
the satellites and ground stations using ephemeral microVMs
while StarryNet does so using containers. Since both these
emulators run applications on all satellites, it resulted in the
orchestration of the emulator being tightly coupled with the
orchestration of the application. Hence, it would have taken a
significant engineering effort to specifically replace the LEO
compute orchestration layer separately. Further, deploying
Kubernetes on microVMs and containers required consider-
able engineering effort. Combining these two changes made
it harder for us to extend these systems leading us to build
our custom emulation framework. However, it is important
to note that we borrowed the logic for managing satellite po-
sitions and modifying the GSL/ISL latencies (essentially all
the computations related to satellite motion) while building
our stack on top of virtual machines (VMs). Our emulator is
also available as part of the Krios git repo.

To effectively answer the questions we pose in our evalu-
ation, we need to emulate the deployment of an application
from the perspective of a particular LEO zone. While we do
need to model the position of all the satellites in the constella-
tion, we primarily need to focus on the location (which also
determines the latency for the end user) of the satellite node
running the application, and the node to which the applica-
tion needs to be handed over to. To maintain the fidelity of
this emulation, the latencies between the end user and these
two satellite nodes, as well as the orchestrator and these two
satellite nodes, need to be modified to reflect the position of
the satellites. Further, we are only focused on studying the
latency characteristics based on the position of the satellite
with respect to the LEO zone, hence we do not worry about
any queueing artifacts that may be introduced due to satellite
hops. While two satellite nodes can help us evaluate for a
single handover, i.e., to run the emulation for about 3 minutes,
to run a 100 minute emulation will require larger number of
nodes. Instead, we use a virtualized emulation setup where
we constantly change the identities of the satellite nodes em-
ulated by the VMs, so that we can reuse them for multiple
handovers. To support one application, we need one auxil-
iary satellite node onto which a running application instance
can be handed over to. Essentially, our emulator needs two
satellite VMs per application and another two as orchestrator
and client. For all our evaluations, we use 6 VMS: four to
emulate satellite nodes, one orchestrator node, and one user
terminal node. Note that this set up emulates four satellites at
a given time instance. Over the course of 100 minutes, these
VMs claim the identity of ~300 satellites. This allows us to

https://github.com/GTkernel/krios
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Figure 8: Architecture of our emulation setup for Krios.

run the emulation for 100 minutes with fewer nodes while
maintaining the fidelity of our experiments.

The emulator, shown in Figure 8, operates by assigning to
the satellite nodes identities of satellites that are accessible
from the LEO zone being used for evaluation. One node (VM)
emulates the satellite where the application is deployed, and
executes it. The identities of the remaining 3 satellite nodes
are updated every second, while ensuring that one of them
is always assigned the identity of the optimal satellite at that
instance. This is feasible because of the forward-predictability
in satellite motion and a backward-knowledge about the appli-
cation being emulated. In a single application case, the other
two are assigned identities of random satellites accessible
from the LEO zone. The identity manager does not change
the identity of the satellite running an application until the
application is handed over to another satellite to maintain
correctness of the emulation. The emulator also continuously
modifies the RTT between the satellites and the orchestrator,
and between the satellites and the client, using the Python tc-
config package [52]. Each satellite node (24 cores, 2.67 GHz)
is similar to the Hewlett Packard Enterprise EL 8000s (24
cores, 2.4GHZ) used by OrbitsEdge in satellites to provide an
edge offering [5, 83]. We run our Krios implementation on
the orchestrator node.
Emulated Constellation Characteristics. We evaluate Krios
by emulating two different constellations - (1) first shell of
Starlink, and (2) all the 6416 Starlink satellites (as of Oc-
tober 2024). The first shell consists of 1584 satellites split
evenly across 72 orbital planes (22 per orbital plane). We
assume a grid of ground stations uniformly spread on the
EarthâĂŹs surface similar to [48]. We use SGP4 to predict
the position of every satellite (similar to [28, 41, 65]) ev-
ery second and compute the latency from the user termi-
nal/ground station to satellites using ground stations as re-
lays [48], using each of the ground-satellite link RTT as 9ms
(18 ms [63] for ground-satellite-ground and back). While
prior work [27, 30, 47, 48, 50, 65] has calculated RTT as the
distance covered divided by the speed of light (about ~4 ms),
we use 9 ms as it is the lowest reported latency by Starlink.
For the latency along the ISLs, we use the propagation delay
value as there are no such measurements available. For our

Latency (ms) Smokeys Oil Rig Instances
%ile 95 99 95 99 per App

Ground Station edge 1600 1928 37.8 37.6 N/A
Kubernetes 13780 18746 667 667.2 1

Naive LEO compute 1144 1164 19.2 19.5 475
Krios LEO compute 1144 1164 19.2 19.3 1.03

Comparison 12x 16x 34.7x 34.5 461x

Table 2: LEO compute workloads latency performance with
Krios compared to different deployment scenarios. Compari-
son refers to gains over Kubernetes for latency and Naive edge
for instances.

Baseline GS edge k8s Naive Krios
Data-plane bytes/day 760GB 15TB 380GB 380GB

Control-plane bytes/day N/A 116Mb 55GB 50GB

Table 3: Data-plane and control-plane bytes/day for serving
trail map at Smokey Mountains.

Req Size Resp Size GS (0) k8s (1) naive (475)
Small Small 2x 38x 1x
Small Large 1.9x 27x 1x
Large Small 2.3x 44x 1x
Large Large 1.9x 40x 1x

Table 4: Benchmarking 99th percentile latency of templatized
LEO compute workloads using Krios compared to other de-
ployment strategies. The numbers in brackets correspond to the
number of instances needed. Krios only requires 1.03 instances

latency measurements, we do not introduce any artificial loss
to explicitly focus on the delay due to the network.
Evaluation Metrics. We look at the worst-case latency to
reach the application from the LEO zone. We use this metric
to show the effectiveness of Krios-enabled LEO compute for
two applications, as well as to compare the effectiveness of
Krios against the incremental baselines. Using microbench-
marks, we demonstrate the effectiveness of individual mecha-
nisms and policies to characterize the performance and limi-
tations of Krios.

7 EVALUATION
7.1 LEO Compute Application Benefits with

Krios
We present results for two concrete applications: (i) a web
serving application in a remote national park and (ii) an IoT
aggregator collecting sensor information from oil rigs in the
Gulf of Mexico. These applications require targeted deploy-
ments to serve specific geographical ares and they are rep-
resentative of LEO compute applications that are amenable
for today’s LEO satellite use cases – web access in remote
areas and LEO satellite driven IoT aggregation. Both these
applications do not have external mutable state requirements.
For the web access application, we use fixed state which
rarely changes. The IoT aggregator only has to track instanta-
neous availability of the sensors. We also look at templatized
applications modeled after standard edge/cloud applications
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varying the request and response sizes. We compare the per-
formance of a Krios-enabled LEO compute cloud with a
naive LEO compute with 475 instances, and a Kubernetes
driven LEO compute deployment with 1 instance, while also
drawing comparisons with using an edge deployed on ground
stations3. The Kubernetes driven baseline treats all satellite
nodes equally, due to its location agnostic nature.
Serving Trails at Smokey Mountains. This application serves
the trail map (~100 MB) at the Great Smokey Mountains na-
tional park. This is one of the most popular national parks
in the US, but has very poor cellular network connectivity,
making it an ideal fit for LEO satellite based internet service.
This application requires a 50 km radius LEO zone to cover
the entire national park.

Table 2 shows the latency percentiles for accessing this
static trail map in the different scenarios. Given the size of
the map size, multiple packets are needed to deliver the entire
map. This needs to comply with the TCP window and hence
the latency increases even more if the satellite is not directly
accessible. While the naive LEO compute gets similar per-
formance as Krios, it does so with 475 application instances,
with each of them only serving for a maximum of 3-4 minutes
per 97 minutes – cost that cannot be justified for a targeted
application like this. Instead, Krios achieves the same benefit
from the perspective of application responsiveness, with just
~1 instance. Krios-enabled LEO compute cloud requires the
application image to be transferred to the incoming satellite
during handovers. We found that Krios performs a handover
every 200 seconds (median) for this LEO zone, resulting in
approximately 432 handovers in a day. In our implementation,
we packaged this trail map inside an Nginx container result-
ing in an image size of 116 MB, which results in a total of
50 GB spent on performing the handovers (Table 3). This is
still lower than the bandwidth consumed by 475 application
instances (475 * 116 MB = 55 GB) in a naive LEO compute
deployment as the application images need to be transferred
to the satellites at some point. Krios-enabled LEO compute
cloud performs better compared to the ground station edge
deployment in both latency and overall bytes on the network,
even after considering the bytes spent in handovers. The Ku-
bernetes baseline performs even worse as the satellite will be
quite far away most of the times.

This park had an annual attendance of 14 million in 2021
which translates to approximately 38000 visitors a day. There-
fore, even if just 10% of the visitors access this map in a
day, it would result in 3800 × 100 ∗ 2 MB i.e. 760 GB of
data being sent over the GSLs in a bent-pipe of a ground sta-
tion edge deployment. On the other hand, if deployed through
Krios-enabled LEO compute, half of these bytes will be saved,

3This can also be considered as an optimized bent-pipe.

achieving latency and bandwidth usage reduction while prac-
tically enabling a LEO compute.
Monitoring Oil Rigs in the Gulf of Mexico. We show the
applicability of Krios to two oil rig monitoring applications.
We chose two oil rig locations [81] that are 135 km away and
used a 5 km radius LEO zone. In this case, the oil rig sen-
sors constantly ping heartbeat packets (4B) to the aggregator.
Table 2 shows the latency performance in this scenario.
Templatized LEO Compute Application Performance. We
present the latency behavior of templatized LEO compute ap-
plications when they are deployed on LEO compute using
the different deployment strategies in Table 4 as a multi-
plier to the latency observed by Krios. These applications are
implemented on top of Nginx containers modified to these
request/response sizes. The bandwidth behavior for these ap-
plications will be the same, exhibiting similar patterns as
shown in Table 3 as bytes on the network are always propor-
tionally impacted based on how many handovers are needed
(for Krios), how many satellites the application image needs
to be transferred (for naive LEO compute), and how many
hops it takes to reach the application (for k8s driven edge).

In summary, these results demonstrate that Krios enables
a practical LEO compute cloud and drastically reduces the
satellite resource and link consumption.

7.2 Effectiveness of Krios
The previous results show the benefit of using a LEO compute
orchestrator to manage application deployment over a naive
deployment where an application is ubiquitously present a pri-
ori. Next, we justify the design decisions in Krios by showcas-
ing their contributions to overall system effectiveness while
using terrestrial orchestrators and policies for handovers as
baselines. For these experiments, we assume the presence of
the application images on the satellites to specifically measure
the impact of individual mechanisms and policies.
Benefits of Krios Mechanisms. To show the incremental
benefits of Krios mechanisms and components, we measured
the worst-case latency to access the satellite from a LEO zone.
As this increase in latency is only due to the increase in the
number of hops to reach the satellite, it also results in greater
bandwidth utilization. To study this, we used our emulation
setup with the first Starlink shell (1584 satellites) and mea-
sured the latency from the perspective of a LEO zone centered
in San Francisco (37.7749oN , 122.4194oW ) with a radius of
100 km. We use the stateless Nginx service with a request
size of 64 Bytes and a response size 615 Bytes. Figure 9
shows the latencies observed by the clients while accessing
the Nginx service. We compare four scenarios ranging from
path-unaware stock Kubernetes to Krios while adding in the
Krios scheduler and (not proactive) application handovers as
the intermediate baselines.
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Figure 9: Comparing the worst-case user latencies to reach an application deployed by Stock k8s, Stock k8s with Krios scheduler,
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Figure 10: Comparing time between handovers for different
minimum elevation angle constraints using Krios. Starlink cur-
rently uses a constant 15 second handover interval.
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Figure 11: Time between handovers for Krios scoring vs other
wireless policies.

For the baseline k8s deployment, we consider the entire
constellation as a single cluster with location-unaware or-
chestration. Stock Kubernetes (Figure 9a) will result in high
variations in the latencies observed by the users as any satellite
could be chosen from the constellation and its position will
keep varying with time. We show two different examples of
satellites that could be chosen by such an orchestrator result-
ing in varying access latencies. While adding Krios scheduler
provides direct access at the beginning of the emulation re-
sulting in lower latencies (Figure 9b), once the satellite moves
out of range, the latency increases. In both of these scenarios,
it is important to observe that if the latency is greater than
the median latency offered by Starlink 42ms [56, 61], a LEO
compute cloud starts losing its benefits and actually becomes
detrimental to the entire system.

This is greatly improved by adding Krios LEO controller
that can continuously handover applications (Figure 9c). How-
ever, if the handovers aren’t proactive, i.e., they are triggered

when the satellite is about to be inaccessible, it creates mul-
tiple spikes during those times while the new application
instance is being initialized. While these seem like small la-
tency spikes, they still result in application downtimes during
the spikes. Such downtimes in observation satellites would
imply the LEO compute application tuned to cover one ge-
ographical region is running over another region that may
have completely different characteristics and may require a
different model. To resolve this, Krios performs proactive
handovers masking the time required for the initialization of
the new instance. This allows Krios to consistently achieve
direct access (Figure 9d) and thus maximize the latency and
bandwidth savings.
Benefits of Krios-handovers compared to Periodic Han-
dovers. We compare the proactive handovers triggered by
Krios to the periodic handovers by Starlink today. Recent
measurement studies [57, 78, 95] for the Starlink constel-
lation indicate handovers occurring every 15 seconds, with
increased elevation angle shown as one of the key benefits
achieved – more than 80% of the satellites chosen had an
elevation angle of at least 45o [95]. We measure how Krios
would perform when the elevation angle is more constrained
as it will obviously result in more frequent handovers in Fig-
ure 10. As expected the time between handovers reduces (and
thus the number of handovers increases) as the minimum al-
lowed elevation angle is increased. However, even at 45o , the
median time between handovers is 94 seconds (6x of the Star-
link frequency). Essentially, Krios enables tuning the quality
of the network links used while still outperforming periodic
handovers aimed at similar benefits.
Benefits of Krios Scoring Policy. We compare the path-
aware node selection policy used by Krios during handovers
with the random node and closest node selection policies.
Figure 11 shows the comparison of the average time between
handovers of each of these policies. As expected, a random
node selection policy requires very frequent handovers and
has high variations since this policy will select nodes visible
for shorter durations with the same probability as nodes vis-
ible for a longer duration. While the closest node selection
policy improves over the random policy, a node is used for
just about half the time a satellite is accessible from the zone
because the closest node would have covered half the distance
in the LEO zone’s projected region and hence is available for



Krios: Scheduling Abstractions and Mechanisms for Enabling a LEO Compute Cloud SoCC ’24, November 20–22, 2024, Redmond, WA, USA

0 25 50 75 100
Radius of LEO Zone (km)

120

160

200

240

280

Ti
m

e 
be

tw
ee

n
ha

nd
ov

er
s (

se
c)

Current
First Shell

Figure 12: Comparing the time between handovers for LEO
zones with varying sizes.
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Figure 13: Comparing the scalability of the Krios-scheduler
with a nop-scheduler.

just half the time. The Krios scoring policy performs 1.5×
better than the closest node selection policy and 2× better
compared to the random node selection policy by schedul-
ing on nodes that will be accessible for the longest duration
amongst the alternatives available.

In summary, the above results demonstrate that Krios ef-
fectively eliminates the impact of LEO satellite mobility on
application performance and improves the current policies
used for handovers, optimizing the use of LEO compute.

7.3 Krios Microbenchmarks
We next evaluate several aspects of Krios that were not ex-
plicitly covered in earlier sections.
Impact of LEO zones size. Figure 12 shows the impact of
the size of a LEO zone on the time between handovers. We
compare the time between handovers for circular LEO zones
with radius 0km, 25km, 50km, 75km, and 100km. As the
size of the LEO zone increases, the time between handovers
reduces leading to an increased number of handovers. This
downward trend is consistent with our analysis in §5.
Krios Scheduler Scalability. Figure 13 shows the time taken
by the Krios scheduler to schedule different number of appli-
cations, each with a different LEO zone. As we are trying to
benchmark our scheduler, we only measure the time taken by
the scheduler to make a scheduling decision and disregard
the time taken by the rest of the control plane to deploy the
application. Concretely, we measure the time taken by an
application to reach the ‘Scheduled’ state in Kubernetes. We

CPU (millicores) Memory (bytes)

Kubernetes 2020 4254Mi
Krios 2469 4594Mi

Table 5: CPU and memory utilization k8s vs. Krios.

# Pods 10 50 100

Creation 2.3 8.57 21
Deletion 2.36 10 19

Table 6: Additional network bytes by Krios for handovers.

compare the Krios scheduler implementation with a no-op
scheduler which simply selects a random node for scheduling
and plot the average scheduling time for scheduling one pod.
We perform these measurements multiple times and present
the average values. We observe that both the schedulers have
near-identical performance. Concretely, Krios adds ~3-5%
scheduling overhead. This is because the additional work
introduced by Krios, in the filtering and the scoring stages, re-
mains a small fraction of the underlying scheduler execution.
Important to note here is that any handovers that need to be
performed are effectively new applications to be scheduled
by Krios. So, from the orchestrator’s perspective, the number
of apps to be scheduled (on x-axis) is either all new deploy-
ments or all handovers or a mix of both. This only shows
that the Krios scheduler decision remains as scalable as the
underlying terrestrial orchestrator (Kubernetes in our case)
scheduling loop.
Satellite Compute Overhead. On the LEO satellites, the
compute overhead by Krios is experienced at the time of ap-
plication handovers when there will be two instances running
concurrently. However, this overhead is observed for just 5
seconds (Equation 1) every 3 minutes (Figure 11), i.e., for
about 3% of the time. To be able to provide similar availability
guarantees without Krios, 475 satellites need to concurrently
run the same application instance (Figure 2). Thus, instead of
running 475 instances all the time, Krios runs two instances
for very short durations frequently, while running a single
instance for 97% of the time.
Krios Control Node Compute Overhead. Table 5 shows
the additional compute overhead introduced by Krios on the
control node. However, this increase is acceptable since the
control node is deployed terrestrially, e.g., in ground stations
where this increase can be accommodated.
Krios Control Message Overhead. The LEO controller mod-
ule of Krios creates the application instance on a different
node (directly accessible from the LEO zones) and deletes
the instance from the earlier node. Table 6 shows the number
of bytes exchanged between the ground station (control node)
and the satellite for pod creation and pod deletion in addi-
tion to the bytes required to transfer the application image.
Using these numbers, we estimate that per pod, Krios causes
about 400 bytes (~200 bytes each for creation and deletion)
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of network overhead during every handover action (which
happens once every 3 minutes). While this does add some ex-
tra bytes to the satellite network, it is considerably lesser than
the number of bytes it helps reduce on the satellite network.

In summary, Krios enables LEO compute while incurring
minimal overheads on control plane nodes, and negligible
overhead on the LEO satellites as well as the satellite links.

8 DISCUSSION
Energy Utilization. LEO satellites harvest solar energy for
carrying out their regular functions as well as for enabling
compute. In that sense, orchestration systems should model
the energy harvested by a satellite as well as energy consumed
by candidate applications while making scheduling decisions
With Krios, we develop a capability for targeted deployment
of LEO applications (closer to their desired end users). Future
extensions of Krios can incoporate other metrics, including
energy harvesting models and energy utilization models [29],
as part of orchestration systems for the LEO compute cloud.
Suitability of LEO compute applications. An application
deployed on LEO satellites will incur overheads either to de-
ploy it on all satellites, like in prior work, or due to handovers,
as is done by Krios. This creates a tradeoff that should be
considered when determining how to deploy an application
as part of the LEO compute cloud. Applications with small,
immutable state, such as the selective forwarding units in a
video calling applications, ML inference models, etc., can
easily reside on satellites (given the large available storage),
but other applications such as CDNs and IoT aggregators with
large, mutable states would require a careful analysis of the
benefits provided by deploying them on LEO satellites to en-
sure a positive tradeoff between the cost for updating the state
and benefits gained from deploying on the satellites. How-
ever, as Krios is designed to be application-transparent, any
targeted LEO compute deployment will benefit from even
if all terrestrial edge/cloud applications may not be suitable
for LEO compute deployment. We consider the analysis of
suitability of applications to be deployed on satellites out of
scope for this work.
Scaling applications. Krios highlights the fundamental mech-
anisms and policies required to orchestrate LEO compute
applications. While these would remain valid even as the
number of applications scale, it would require more sophisti-
cated policies and potentially running multiple orchestrators.
We leave the ensuing discussions on necessary policies and
coordination mechanisms for future work.
Extending Software-defined LEO Zones. In this paper, we
introduce the notion of software-defined LEO zones. This
concept allows application providers to specify their require-
ments in a declarative manner that the system is able to satisfy.

This is in contrast with how the terrestrial ecosystem has ex-
isted wherein the application provider needs to specify exactly
where their application needs to run. We hypothesize that this
concept can be easily adapted for the terrestrial edge/cloud
scenario allowing providers greater freedom and helping the
infrastructure better load balance.

9 RELATED WORK
The field of LEO satellite computing has seen a lot interest
focusing on enabling different applications, both for commu-
nication and observation satellites. Orbital Edge Computing
(OEC) [41] proposes an architecture where satellites share the
computational load to perform inference on captured images.
However, the orchestration in this case is tied to the applica-
tion logic itself, making it harder for the system to support
multiple applications. While Kodan [39] adds the ability to
run multiple applications, the applications need to undergo a
lot of preprocessing before they’re deployed on the satellites.
FedSpace [93] highlights the challenges associated with fed-
erated learning training on satellites while focusing on data
staleness. [84] discusses the possibility of deploying a CDN
on the LEO satellite infrastructure with the satellites acting
as the points-of-presence (PoP). Similarly, [70] discusses the
feasibility of deploying a cellular core on LEO satellites. But
all of these involve running the same application on all the
satellites. Krios, on the other hand, focusses on the general
systems issues faced by LEO compute applications to present
an orchestration stack for deploying general-purpose appli-
cations, not just for the use cases evaluated in this paper, but
also for the applications mentioned above.

Bhattacherjee et al. [27] concretely discuss the possibility
of deploying an edge on LEO satellites and discuss the poten-
tial challenges that need to be addressed for a successful LEO
compute cloud. They also discuss the range of applications
that could potentially benefit such as content distribution,
multi-user gaming, etc. However, this work is largely a feasi-
bility study and does not discuss the concrete challenges of
deploying such applications. [87] assess the different orga-
nizational paradigms for applications (OPAs), namely VMs,
containers, and serverless functions, in the context of LEO de-
ployments. Krios goes beyond using path models to defining
the abstractions, mechanisms and policies required for system
support of a LEO compute orchestrator including support for
application handovers.

Recent studies have also provided a range of network mea-
surements data on Starlink satallite deployments [57, 78, 95]
These have uncovered the occurrence of periodic handovers
that govern which satellite a particular user terminal talks to.
We also compare Krios handovers with periodic handovers in
Figure 10 and observe that even in a more constrained setting,
Krios reduces the frequency of handovers.
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10 CONCLUSION
We presented Krios, a software system that makes it feasible
for LEO satellite providers to offer an effective LEO compute
cloud. Krios achieves this by centering its design around the
novel software-defined LEO zones abstraction while incorpo-
rating necessary mechanisms and policies for proactive and
predictive application handovers. Krios is designed to ensure
its seamless integration with existing terrestrial orchestration
stacks and to avoid disruptive changes to application devel-
opment, thus, paving the way for a practical LEO compute
cloud. We consider Krios as a starting point to show there
are gaps in terrestrial software system designs that need to
be addressed to develop software systems for LEO compute
cloud, and perhaps in other extra-terrestrial settings [86].
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A CALCULATING SIZE OF PROJECTED
REGION

Figure 14: Space projected region calculation.

We use Figure 14 to calculate the size of the space projected
region for given a LEO zone. In this figure, the outer circle
represents the satellite’s orbit, the inner circle represents the
Earth with point O as the center. The arc AB is the intended
LEO zone with the arc ST is its space projected region. Let the
Earth radius be R, the satellite altitude be a, and the radius of
the LEO zone be r . Point S represents the furthest a satellite
can be from the LEO zone so that the entire LEO zone is
accessible from the satellite (using the maximum elevation
angle of 25o). This gives us OP = OA = OB = R, OS = R + a.
Further, ∠SAO = 90o + 25o . We observe that to calculate the
size of the space projected region, we first need to calculate
∠SOP .
• In △, we know the lengths of sides OA and OS , and ∠SAO .

We use this to calculate ∠ASO using the sine rule.
• Now with ∠SAO and ∠ASO are known, we calculate ∠AOS .
• We calculate ∠AOP = AP

R =
r
R .

• Finally, we get ∠SOP = ∠SOA − ∠AOP .
With ∠SOP , we calculate the size of the space projected

region, as well as its projection on Earth.

B EXAMPLES OF DIFFERENT LEO
ZONES SHAPES

Figure 15: Space projected region for a triangular LEO zone.

https://cdn.arstechnica.net/wp-content/uploads/2016/11/spacex-Legal-Narrative.pdf
https://cdn.arstechnica.net/wp-content/uploads/2016/11/spacex-Legal-Narrative.pdf
https://kubernetes.io/blog/2015/09/kubernetes-performance-measurements-and/
https://kubernetes.io/blog/2015/09/kubernetes-performance-measurements-and/
https://kubernetes.io/blog/2016/03/1000-nodes-and-beyond-updates-to-kubernetes-performance-and-scalability-in-12/
https://kubernetes.io/blog/2016/03/1000-nodes-and-beyond-updates-to-kubernetes-performance-and-scalability-in-12/
https://doi.org/10.1145/3357526.3357542
https://doi.org/10.1145/3357526.3357542
https://foreignpolicy.com/2022/05/04/starlink-ukraine-elon-musk-satellite-internet-broadband-drones
https://foreignpolicy.com/2022/05/04/starlink-ukraine-elon-musk-satellite-internet-broadband-drones
https://telecoms.com/514594/lynk-launches-first-commercial-ready-cell-tower-in-space-
https://telecoms.com/514594/lynk-launches-first-commercial-ready-cell-tower-in-space-


Krios: Scheduling Abstractions and Mechanisms for Enabling a LEO Compute Cloud SoCC ’24, November 20–22, 2024, Redmond, WA, USA

Figure 16: Space projected region for a square LEO zone.
We show what the space projected region will look like for

non-circular shapes. To calculate the space projected region

for any general shape LEO zone, the trivial approach would
be to project the circular space projected region of every point
in the zone and take their intersection. Recall that the space
projected region for a point is a cone, thus when it is projected
on the Earth, it would be circular. For polygonal shapes, this
can be optimized by calculating the intersection of the space
projected regions from the vertices. We show two examples
- a triangle (Figure 15) and a square (Figure 16). The key
takeaway here is that finding the space projected region for
different shapes is feasible, even if more computationally
involved compared to circular LEO zones. Krios preforms
these computations when scheduling applications as well as
to determine the triggers for handovers.
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